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Commercial aircraft designs have
begun to plateau in fuel efficiency

X100 |
5 g0l 50%
i iImprovement
S 60 |
= \ 4
=40
-
)
T
= 20
0

1060 1970 1980 1990 2000 2010
Year

[Efficiency trends for new commercial jet aircraft. ICCT, 2009]



Commercial aircraft designs have
begun to plateau in fuel efficiency
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The tube-and-wing configuration has been
perfected over the last 50 years
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Breakthrough improvements require
unconventional aircraft configurations

Truss-braced wing Blended wing body

Joined wing Double bubble



Low-fidelity and empirical design tools
do not adequately model the tradeoffs

Additional wave and High aspect-ratio Continuous descent and
interference drag composite wings low Mach number flight
1 1 i1

CFD analysis Aeroelastic tailoring Mission analysis



Adjoint-based design optimization algorithms
can accelerate the design process
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Adjoint-based design optimization algorithms
can accelerate the design process
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The challenge problem:
How can we design a new configuration while
considering the impact at the airline level?




We chose to focus on the truss-braced wing
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The approach is to find the best design
that maximizes profit for the airline

Aircraft
design
Aerostructural CL, CD, Cm at Mission Fuel burn, Allocation
analysis each point analysis block time analysis
In the mission on each route
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To do this, we perform simultaneous
allocation-mission-design optimization

Fuel burn,
block time

Airline Allocation
profit analysis
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To do this, we perform simultaneous
allocation-mission-design optimization
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One mission analysis
per airline route

.. but aerostructural analysis is computationally expensive



Our proposed solution is
to use surrogate modeling
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Subprojects for Year 1
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e
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matrix-free optimizer
computational framework

3. Aerostructural modeling and optimization of the TBW
4. Mission and allocation modeling and optimization
5. Uncertainty quantification for multifidelity design
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Subproject 1
Parallel numerical optimization
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Gradient-based optimization takes
a more direct route to the optimum

Gradient-free Gradient-based
optimizer optimizer
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Gradient-based optimization is the only hope
for large numbers of design variables

Function Evaluation
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The adjoint method computes gradients with
respect to large numbers of variables efficiently

Large numbers of
design variables
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... but the adjoint method cannot handle large
numbers of variables and constraints simultaneously

df _of of [0R] 'OR
dx Ox Oy|oy| Ox

Large numbers of
design variables

Large numbers of
design variables and
constraints




Current state-of-the-art optimizers
do not scale well with problem size...

...they solve the optimality conditions using Newton’s method

Wi Alllp Ok
Ak 0 a Ck

This requires the matrices W and A explicitly, which are
costly to compute for large problems



We developed an all new algorithm for numerical
optimization that uses a matrix-free approach

Instead of requiring the matrices explicitly, our optimizer
requires only matrix-vector products

Wi Alllp Jk
Ak 0 a Ck

This saves memory and computational time, enabling the
solution of very large problems

RSNK: Reduced-space Newton—Krylov

[Hicken and Dener, SIAM J.Opt., 2015 (submitted)]



We benchmark this new algorithm on an
aerodynamic shape optimization problem

minimize drag coefficient

with respect to  airfoil shapes

subject to  lift constraint
moment constraint
volume constraint
thickness constraints

0

[ Z




Previous results with conventional optimizers show

that this is a challenging problem

Cp: 4.0 05 00 05 10

Baseline : Optimized

C, = 0.019967 ) BN | C, = 0.018277
C. = 0.5000 C’ = 0.5000
C., =-0.1779 P C., =-0.1700

Lyu, Kenway and Martins, 2015]


http://arc.aiaa.org/doi/full/10.2514/1.J053318

A matrix-free interface was developed for our
CFD solver and adjoint

SUMad (based on SUmb)

Parallel, finite-volume, cell-centered,
multiblock solver for RANS equations

Spalart-Allmaras turbulence model

Implemented adjoint using automatic
differentiation to evaluate partial
derivatives

Developed both frozen-turbulence
and full-turbulence adjoint

New: matrix-free interface




RSNK was shown to be more efficient than
a state-of-the-art optimizer for large problems
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[Dener, Hicken, Kenway, Lyu and Martins, AIAA 2015-1945]



CPU Time (s)

Summary for Subproject 1

Year 1 achievements:
> Developed a novel parallel optimizer
> Develop a matrix-free RANS CFD adjoint

> Demonstrated scaling on a high-fidelity
~sm —~—— aerodynamic shape optimization problem

Next steps:
> Perform RANS-based aerodynamic shape
optimization

RSNK
2500~

> Implement inequality constraints

2000+
SNOPT

> Implement matrix-free aerostructural

1 1 1 1 1 1 1
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Subproject 2
Parallel computational framework
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Combining many types of models and
computing their gradients is challenging
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Combining many types of models and
computing their gradients is challenging
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We recently developed an equation that
unifies the methods for computing derivatives
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[Hwang and Martins, AIAAJ, 2013]



Using this theory, we developed a parallel
framework that computes coupled gradients

Each component computes its local derivatives;
the framework computes coupled gradients automatically



The framework uses efficient
numerical linear algebra

Block Gauss-Seidel

Preconditioned _
Krylov subspace methods

The built-in solvers are used extensively
In the mission analysis component

[Hwang and Martins, 2015 (to be submitted)]



This algorithmic framework has been
implemented in NASA’'s OpenMDAO

se=EmMIDIAIO

Several other applications have been handled:

Satellite design and

. ST Wind turbine optimization
operation optimization

[Gray, Hearn, Moore, Hwang, Martins, and Ning, AIAA 2014-2042]



Summary for Subproject 2

Year 1 achievements:

v | . "~ Developed a novel algorithmic framework
B - = for coupled analysis and gradient
- | - computation

> Implemented framework numerical
methods in OpenMDAQO

B > Successful spin-offs through OpenMDAO
Next steps:
> Benchmark framework in other problems

OPDE m D m @ > Continue supporting OpenMDAOQO team



Subproject 3
Aerostructural modeling and optimization of
the truss-braced wing aircraft
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To model the TBW, we use GeoMACH,
which was developed in an earlier NASA effort

GeoMACH models aircraft geometries and structures
using a differentiable parametrization



To investigate the aerodynamics near the strut,
we performed Euler-based shape optimization

minimize drag coefficient

with respect to angle of attack 1
fuselage shape variables 25
wing shape variables 200
strut shape variables 128
v. strut shape variables 50
tail shape variables 128
532

subject to  lift coefficient constraint (0.5)




Shape optimization eliminates the shock
and reduces the drag by 58%

Initial Optimized

solution solution




Shape optimization eliminates the shock
and reduces the drag by 58%

Initial Optimized

solution solution




We obtained similar results
with the RANS equations

Baseline Optimized
Co=0.0458 A A Co=0.0363




We also developed a structural model

for the truss-braced wing using GeoMACH

SR




Summary for Subproject 3

\ Year 1 achievements:

> Developed geometries for the wing &
struts and for the full TBW configuration

> Performed aerodynamic shape
optimization to eliminate the shock

> Began development of a structural model
for the TBW

> Perform detailed shape optimization
> Perform aerostructural optimization

> Develop an aerostructural surrogate
model




Subproject 4
Mission and allocation modeling and optimization
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We developed a unique mission analysis tool
within the parallel framework

Legend Symbols
CompoundSystem W aircraft weight
IndependentSystem Mission L lift
ImplicitSystem . D drag

o Nonlin: GS
ExplicitSystem Linear: CS T thrust
| | ? | |
Inputs B-splines Flight conditions Coupled analysis Outputs

Nonlin: Newton
Linear: Krylov

9

I | I I |
Vert. equilibrium Aerodynamics Hor. equilibrium Propulsion Fuel weight

W — L L—D D—T T 5 W W — W

The framework automatically computes derivatives
using the adjoint method



The mission analysis solves
the flight equilibrium equations

W d
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qg dr
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The altitude and Mach profiles can be optimized
using a B-spline parametrization

............. t. € Akarh) | /\
Path Angle (deg) i N
- 0.85 {\ J\
AoA (deg) i M \J
The remalnlng CL015_ V \‘\J
variables are oo f -
computed by
SO|V|ng a System Thrust (107 1b) (\
! oL
of equations ] ———___
: 6 ?OOO
Range



Multiple trajectories can be optimized quickly

Mission
Range
9000 NM
Alt (10° ft)
Path Angle (deg)
Fuel (10° 1b)

100 NM

classic cruise-climb result
appears for longer missions

100 NM mission never
reaches a steady cruise

———4

more fuel needed for
longer missions

Normalized Range

[Kao, Hwang , Martins, Gray, and Moore, AIAA 2015-0136]



The allocation problem seeks
to maximize profit

maximize profit

with respect to  flights/day for each route and a/c
pax/flight for each route and a/c
altitude profiles for each route and a/c

subject to mission profile constraints
route demand constraints
aircraft availability constraints
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We tested allocation-mission optimization
on a 3-route test problem

5500 nmi
K Uwait Cityls

Hong Kong

Aircraft Boeing Boeing Boeing  Boeing CRM: advanced BWB: blended

737-800 777-200ER  747-400  787-8 conventional wing body
Category Existing Existing Existing Existing New New
Capacity 122 207 294 200 300 400
Scenario
S-base 20 24 24 8
S-CRM 20 24 24 8
S-BWB 20 24 24 8

S-both 20 20 20 8 8




Allocation-mission optimization yielded
large profit increases with next-generation aircraft
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[Hwang, Roy, Kao, Martins, and Crossley, AIAA 2015-0900]
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Summary for Subproject 4

mpoundSystem

ExplicitSystem

Mission

D drag

Inputs

B-splines

Coupled analysis

uuuuuuu

Vert. equilibrium

Profit [$ x 106]
(\]

+414%

+323%

+192%

Wow

S-base S-CRM S-BWB S-both

Year 1 achievements:

> Developed an efficient mission analysis &
optimization tool with analytic derivatives

> Implemented allocation-mission optimization

> Developed a method for solving the mixed-
iInteger nonlinear optimization problem

Next steps:
> Parallelize the allocation-mission optimization
> Solve the problem with larger networks

> Perform allocation-mission-design
optimization



Subproject 5:
Uncertainty quantification for multifidelity design
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We cast the multidisciplinary system design as
an estimation problem

Set Targets

Require-
ments,
Constraints

Define Generate
Parameters Designs

X1 A
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Dy, 19
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Variance, Complexity,
and Risk

Uncertainty Mitigation Strategies




To demonstrate the approach, we solve an
aircraft sizing problem using TASOPT

P Syl /"\vt-"\\ // j ’\\\
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[Drela, 2014]



We focus on gquantifying the sensitivities
to the uncertainty of future engine performance

Tt4CR total temperature at turbine inlet in cruise
OPR overall pressure ratio

PFEI fuel energy consumption
per payload-range



Our approach to global sensitivity analysis

yields design insights
\ OPR
\37(%

/

Tt4CR
637

There are no interaction terms in this case



The results also provide insight into how we can
satisfy cost and uncertainty budgets
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Using these tools, we can quantify the tradeoffs
between cost, standard deviation, and risk
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Summary for Subproject 5
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Year 1 achievements:

> Developed UQ approach for managing
risk in early stage aircraft design

> Demonstrated approach by quantifying
effect of engine technology uncertainty
on fuel burn

Next steps:

> Extend UQ approach to consider
nonlinear interactions

> Complete and demonstrate multi fidelity
approach



1. J. T. Hwang, S. Roy, J. Y. Kao, J. R. R. A. Martins, and W. A. Crossley. Simultaneous aircraft allocation
and mission optimization using a modular adjoint approach. In Proceedings of the 56th AIAA/ASCE/
AHS/ASC Structures, Structural Dynamics and Materials Conference, Kissimmee, FL, Jan. 2015. AIAA
2015-0900.

2. J. Y. Kao, J. T. Hwang, J. R. R. A. Martins, J. S. Gray, and K. T. Moore. A modular adjoint approach to
aircraft mission analysis and optimization. In Proceedings of the AIAA Science and Technology Forum
and Exposition (SciTech), Kissimmee, FL, January 2015. AIAA 2015-0136.

3. J. T. Hwang, G. K. W. Kenway, and J. R. R. A. Martins. Geometry and structural modeling for high-
fidelity aircraft conceptual design optimization. In Proceedings of the 15th AIAA/ISSMO
Multidisciplinary Analysis and Optimization Conference, Atlanta, GA, June 2014. AIAA 2014-2041.

4. J. Gray, T. Hearn, K. Moore, J. T. Hwang, J. R. R. A. Martins, and A. Ning. Automatic evaluation of
multidisciplinary derivatives using a graph-based problem formulation in OpenMDAO. In Proceedings
of the 15th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Atlanta, GA, June
2014. doi:10.2514/6.2014-2042.

5. Hicken and Dener, A Flexible Iterative Solver for Nonconvex, Equality-Constrained Quadratic
Subproblems, SIAM Journal on Scientific Computing (Submitted).

6. J. T. Hwang and J. R. R. A. Martins. A parallel hierarchical algorithmic framework for large-scale
simulation and optimization. SIAM Journal of Scientific Computing, 2015. (To be submitted).

7. A. Dener, J. E. Hicken, G. K. W. Kenway, Z. Lyu, and J. R. R. A. Martins. Aerostructural design
optimization of an adaptive morphing trailing edge wing. In Proceedings of the AIAA Science and
Technology Forum and Exposition (SciTech), Kissimmee, FL, January 2015. AIAA 2015-11209.



. A new modular, scalable, and general numerical
optimization algorithm that handles parallel problems

. A new parallel, scalable algorithmic framework for
multidisciplinary analysis and gradient computation
(now implemented in OpenMDAO)

. A matrix-free CFD adjoint

. An adjoint-based mission analysis and trajectory
optimization code

. A method for simultaneously optimizing aircraft
trajectory and allocation

. A framework for performing aircraft design
optimization under uncertainty
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